

### **General Description**

The GOTOP GPS USB-Dongle is a c omplete GPS engine module that features super sensitivity, ultra low power and sm all form factor. The GPS signal is applied to the antenna input of module, and a c omplete serial data message with position, velocity and time information is presente d at the serial interface with NMEA proto col or custom protocol.

Its -159dBm tracking sensitivity exten ds positioning coverage into place like ur ban canyons and dense foliage environm ent where the GPS was not possible bef ore. The small form factor and low power consumption make the module easy to i ntegrate into portable device like UMPC, mobile phones, cameras and vehicle navi gation systems.

## **Applications**

- LBS (Location Based Service)
- UMPC
- Vehicle navigation system
- Mobile phone



Figure 1:GPS USB-Dongle View

#### **Features**

- Build on high performance, low-power SIRF III chipset
- Ultra high sensitivity: -159dBm
- Extremely fast TTFFat low signal level
- Built in high gain LNA
- Low power consumption: Max 45mA@ 5.0V
- Baud Rate:9,600bps;Datum:WGS-84
- Operating voltage:USB 5.0V
- Operating temperature range:-40to85°C
- Patch Antenna Size:18.4(w)mmX18.4(d) mmX4(h)mm
- RoHS compliant (Lead-free)



## **Performance Specification**

| Parameter                   | Specification                                  |                                                    |  |  |
|-----------------------------|------------------------------------------------|----------------------------------------------------|--|--|
| Receiver Type               | L1 frequency band, C/A code, 20-channels       |                                                    |  |  |
| Sensitivity                 | Tracking<br>Acquisition                        | -159dBm<br>-155dBm                                 |  |  |
| Accuracy                    | Position<br>Velocity<br>Timing (PPS)           | 5m CEP without SA<br>0.1m/s without SA<br>60ns RMS |  |  |
| Acquisition Time            | Cold Start Warm Start Hot Start Re-Acquisition | 38s<br>35s<br>1s<br><1s                            |  |  |
| Power Consumption           | Tracking Acquisition Sleep/Standby             | 40mA @5.0V Vcc<br>45mA<br>TBD                      |  |  |
| Navigation Data Update Rate | 1Hz                                            |                                                    |  |  |
| Operational Limits          | Altitude<br>Velocity<br>Acceleration           | Max 18,000m<br>Max 515m/s<br>Less than 4g          |  |  |

## **Interfaces Configuration**

**Power Supply:** Regulated power for the GPS USB-Dongle is required. The input voltage Vcc should be 5.0V ±10%, maximum, current is no less than 100mA. Suitable decoupling must be provided by external decoupling circuitry

#### Plug the USB cable and connect with a laptop

The laptop must have mapping software installed.(Not included in the standard package)
After connecting with laptop by USB cable, Dongle becomes a personal navigator.

GPS USB-DongleprovidesaMicrosoft®certifiedUSBdriver for Windows XP and Windows Vista operating systems. Windows 7 will also be supported following certification

| . Operating System | Support level |
|--------------------|---------------|
|--------------------|---------------|



| Windows XP    | Certified             |
|---------------|-----------------------|
| Windows Vista | Certified             |
| Windows 7     | Certification pending |

# GPS Dongle (1) + Driver CD (2)+ USB extension cable (3)







**GPS Dongle (1)** 

Driver CD (2)

**USB** extension cable (3)

# **Trouble Shooting**

| Problems                                | Reasons                                                                     | Methods                                                                |  |  |
|-----------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------|--|--|
| Noposition output but timer is counting | Weak or no GPS signal can be received at the place of the device            | Find an open space for the device                                      |  |  |
| Can not turn on the COM port            | Incompletely install the device or the COM port of the device is being used | Install the device completely or stop other device that is being used. |  |  |
| Can not find out the device             | Poor connection                                                             | Re-Start PDA or PC and re-install software.                            |  |  |
| No Signal                               | Weak or no GPS signal when using the device indoor                          | Go outdoors to improve the poor GPS signal.                            |  |  |

# **Absolute Maximum Rating**

| Parameter             | Symbol  | Min  | Max | Units |
|-----------------------|---------|------|-----|-------|
| Power Supply          |         |      |     |       |
| Power Supply Volt.    | VDD USB | -0.3 | 5.5 | V     |
| Input Pins            |         |      |     |       |
| Input Pin Voltage I/O | DP/DM   | -0.3 | 5.5 | V     |



| Environment                            |       |     |     |    |
|----------------------------------------|-------|-----|-----|----|
| Storage Temperature                    | Tstg  | -40 | 125 | °C |
| Peak Reflow Soldering Temperature <10s | Tpeak |     | 260 | °C |
| Humidity                               |       |     | 95  | %  |

Note: Absolute maximum ratings are stress ratings only, and functional operation at the maxims is not guaranteed. Stress beyond the limits specified in this table may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the operating conditions tables as follow.

## **Operating Conditions**

| Parameter                | Symbol          | Condition | Min     | Тур | Max     | Units |
|--------------------------|-----------------|-----------|---------|-----|---------|-------|
| Power supply voltage     | VDD             |           | 4.5     |     | 5.5     | V     |
| Powersupplyvoltageripple | VDD_PP          | Vcc=5.0V  |         |     | 40      | mV    |
| Consumption current      | Icc             | Vcc=5.0V  |         | 40  | 50      | mA    |
| Input high voltage       | V <sub>IH</sub> |           | 0.7xVcc |     | Vcc+1.0 | V     |
| Input low voltage        | V <sub>IL</sub> |           | -0.3    |     | 0.3xVcc | V     |
| Output high voltage      | V <sub>OH</sub> |           | 0.8xVcc |     | Vcc     | V     |
| Output low voltage       | V <sub>OL</sub> |           | 0       |     | 0.2xVcc | V     |
| Operating temperature    | Topr            |           | -40     |     | 85      | °C    |

#### **NMEA 0183 Protocol**

The NMEA protocol is an ASCII-based protocol, Records start with a \$ and with carriage return/line feed. GPS specific messages all start with \$GPxxx where xxx is a three-letter identifier of the message data that follows. NMEA messages have a checksum, which allows detection of corrupted data transfers.



The Label Jet GPS USB-Dongle supports the following NMEA-0183 messages: GGA, GLL, GSA, GSV, RMC and VTG.

**Table 1: NMEA-0183 Output Messages** 

| NMEA Record | DESCRIPTION                            |  |  |  |
|-------------|----------------------------------------|--|--|--|
| GGA         | Global positioning system fixed data   |  |  |  |
| GLL         | Geographic position—latitude/longitude |  |  |  |
| GSA         | GNSS DOP and active satellites         |  |  |  |
| GSV         | GNSS satellites in view                |  |  |  |
| RMC         | Recommended minimum specific GNSS data |  |  |  |
| VTG         | Course over ground and ground speed    |  |  |  |

# **GGA-Global Positioning System Fixed Data**

## Table 2 contains the values of the following example:

\$GPGGA, 161229.487,3723.24751,N, 12158.34161,W, 1,07,1.0,9.0,M.0000\*18

**Table 2: GGA Data Format** 

| Name                   | Example     | Units | Description         |
|------------------------|-------------|-------|---------------------|
| Message ID             | \$GPGGA     |       | GGA protocol header |
| UTC Position           | 161229.487  |       | hhmmss.sss          |
| Latitude               | 3723.24571  |       | ddmm.mmmm           |
| N/S indicator          | N           |       | N=north or S=south  |
| Longitude              | 12158.34161 |       | dddmm.mmmm          |
| E/W Indicator          | W           |       | E=east or W=west    |
| Position Fix Indicator | 1           |       | See Table 2-1       |
| Satellites Used        | 07          |       | Range 0 to 12       |



| HDOP                | 1.0  |        | Horizontal Dilution of Precision  |
|---------------------|------|--------|-----------------------------------|
| MSL Altitude        | 9.0  | meters |                                   |
| Units               | M    | meters |                                   |
| Geoids Separation   |      | meters |                                   |
| Units               | M    | meters |                                   |
| Age of Diff.Corr.   |      | second | Null fields when DGPS is not Used |
| Diff.Ref.Station ID | 0000 |        |                                   |
| Checksum            | *18  |        |                                   |
| <cr> <lf></lf></cr> |      |        | End of message termination        |

**Table 2-1: Position Fix Indicators** 

| Value | Description                           |
|-------|---------------------------------------|
| 0     | Fix not available or invalid          |
| 1     | GPS SPS Mode, fix valid               |
| 2     | Differential GPS, SPS Mode, fix valid |
| 3     | GPS PPS Mode, fix valid               |

# **GLL-Geographic Position – Latitude/Longitude**

## Table 3 contains the values of the following example:

\$GPGLL, 3723.24751, N,12158.34161, W,161229.487, A\*2C.

**Table 3: GLL Data Format** 

| Name          | Example    | Units | Description         |
|---------------|------------|-------|---------------------|
| Message ID    | \$GPGLL    |       | GLL protocol header |
| Latitude      | 3723.24751 |       | ddmm.mmmm           |
| N/S Indicator | N          |       | N=north or S=south  |



| Longitude           | 12158.34161 | dddmm.mmmm                       |
|---------------------|-------------|----------------------------------|
| E/W Indicator       | W           | E=east or W=west                 |
| UTC Position        | 161229.487  | hhmmss.sss                       |
| Status              | А           | A=data valid or V=data not valid |
| Checksum            | *2C         |                                  |
| <cr> <lf></lf></cr> |             | End of message temination        |

## **GSA-GNSS DOP and Active Satellites**

Table 4 contains the values of the following example:

 $\$\mathsf{GPGSA}\,,\mathsf{A},\,3,\,07,\,02,\,26,27,\,09,\,04,15,\,,\,,\,,\,,\,1.8,1.0,1.5^*33.$ 

**Table 4: GSA Data Format** 

| Name           | Example | Units | Description                      |
|----------------|---------|-------|----------------------------------|
| Message        | \$GPGSA |       | GSA protocol header              |
| Mode 1         | Α       |       | See Table 4-2                    |
| Mode 2         | 3       |       | See Table 4-1                    |
| Satellite Used | 07      |       | Sv on Channel 1                  |
| Satellite Used | 02      |       | Sv on Channel 2                  |
|                |         |       |                                  |
| Satellite Used |         |       | Sv on Channel 12                 |
| PDOP           | 1.8     |       | Position Dilution of Precision   |
| HDOP           | 1.0     |       | Horizontal Dilution of Precision |
| VDOP           | 1.5     |       | Vertical Dilution of Precision   |
| Checksum       | *33     |       |                                  |



| <cr> <lf> End of message termination</lf></cr> |
|------------------------------------------------|
|------------------------------------------------|

## Table 4-1: Mode 1

| Value | Description       |
|-------|-------------------|
| 1     | Fix not available |
| 2     | 2D                |
| 3     | 3D                |

#### Table 4-2: Mode 2

| Value | Description                                     |  |  |  |
|-------|-------------------------------------------------|--|--|--|
| M     | Manual-forced to operate in 2D or 3D mode       |  |  |  |
| А     | Automatic-allowed to automatically switch 2D/3D |  |  |  |

## **GSV-GNSS Satellites in View**

# Table 5 contains the values of the following example:

\$GPGSV, 2, 1, 07, 07, 79,048, 42, 02, 51,062, 43, 26, 36,256, 42, 27, 27, 138,42\*71 \$GPGSV, 2, 2, 07, 09, 23,313, 42, 04, 19, 159, 41, 15,12,041, 42\*41.

**Table 5: GGA Data Format** 

| Name               | Example | Units   | Description                          |
|--------------------|---------|---------|--------------------------------------|
| Message ID         | \$GPGSV |         | GSV protocol header                  |
| Number of Message  | 2       |         | Range 1 to 3                         |
| Message Number     | 1       |         | Range 1 to 3                         |
| Satellites in View | 07      |         |                                      |
| Satellite ID       | 07      |         | Channel 1(Range 1 to 32)             |
| Elevation          | 79      | degrees | Channel 1(Maximum 90)                |
| Azinmuth           | 048     | degrees | Channel 1(True, Range 0 to 359)      |
| SNR(C/NO)          | 42      | dBHz    | Range 0 to 99,null when not tracking |



| Satellite ID        | 27  |         | Channel 4(Range 1 to 32)              |
|---------------------|-----|---------|---------------------------------------|
| Elevation           | 27  | degrees | Channel 4(Maximum 90)                 |
| Azimuth             | 138 | degrees | Channel 4(True, Range 0 to 359)       |
| SNR(C/NO)           | 42  | dBHz    | Range 0 to 99, null when not tracking |
| Checksum            | *71 |         |                                       |
| <cr> <lf></lf></cr> |     |         | End of message termination            |

Depending on the number of satellites tracked multiple messages of GSV data may be required.

# **RMC-Recommended Minimum Specific GNSS Data**

# Table 6 contains the values of the following example:

\$GPRMC, 161229.487, A, 3723.24751, N, 12158.34161, W, 0.13,309.62, 120598,, \*10

**Table 6: RMC Data Format** 

| Name              | Example     | Units | Description                      |
|-------------------|-------------|-------|----------------------------------|
| Message ID        | \$GPRMC     |       | RMC protocol header              |
| UTS Position      | 161229.487  |       | hhmmss.sss                       |
| Status            | А           |       | A=data valid or V=data not valid |
| Latitude          | 3723.24751  |       | ddmm.mmmm                        |
| N/S Indicator     | N           |       | N=north or S=south               |
| Longitude         | 12158.34161 |       | dddmm.mmmm                       |
| E/W Indicator     | W           |       | E=east or W=west                 |
| Speed Over Ground | 0.13        | Knots |                                  |



| Course Over         | 309.62 | Degrees | True                       |
|---------------------|--------|---------|----------------------------|
| Ground              |        |         |                            |
| Date                | 120598 |         | Dummy                      |
| Magnetic variation  |        | Degrees | E=east or W=west           |
| Checksum            | *10    |         |                            |
| <cr> <lf></lf></cr> |        |         | End of message termination |

# **VTG-Course Over Ground and Ground Speed**

Table 7 contains the values of the following example:

\$GPVTG, 309.62, T, M, 0.13, N, 0.2, K\*6E

**Table 7: VTG Data Format** 

| Name                | Example | Units   | Description                |
|---------------------|---------|---------|----------------------------|
| Message ID          | \$GPVTG |         | VTG protocol header        |
| Course              | 309.62  | Degrees | Measured heading           |
| Reference           | Т       |         | True                       |
| Course              |         | Degrees | Measured heading           |
| Reference           | М       |         | Magnetic                   |
| Speed               | 0.13    | Knots   | Measured horizontal speed  |
| Units               | N       |         | Knots                      |
| Speed               | 0.2     | Km/hr   | Measured horizontal speed  |
| Units               | К       |         | Kilometer per hour         |
| Checksum            | *6E     |         |                            |
| <cr> <lf></lf></cr> |         |         | End of message termination |



# ©Copyright 2013 Gotop Technology Co., Ltd. All Right Reserved The information contained herein is subject to change without notice. Gotop Technology Co., LTD

Add:Room 603 Zhantao Technology Building,Minzhi Road,Xinniu Communnity,Minzhi Street,Baoan District,ShenZhen City China.

Not to be reproduced in whole or part for any purpose without written permission of Gotop Technology Inc ('Gotop'). Information provided by Gotop is believed to be accurate and reliable. These materials are provided by Gotop as a service to its customers and may be used for informational purposes only. Gotop assumes no responsibility for errors or omissions in these materials, nor for its use. Gotop reserves the right to change specification at any time without notice.

These materials are provides 'as is' without warranty of any kind, either expressed or implied, relating to sale and/or use of Gotop products including liability or warranties relating to fitness for a particular purpose, consequential or incidental damages, merchantability, or infringement of any patent, copyright or other intellectual property right. Gotop further does not warrant the accuracy or completeness of the information, text, graphics or other items contained within these materials. Gotop shall not be liable for any special, indirect, incidental, or consequential damages, including without limitation, lost revenues or lost profits, which may result from the use of these materials.

Gotop products are not intended for use in medical, life-support devices, or applications involving potential risk of death, personal injury, or severe property damage in case of failure of the product.