

General Description

The GAM-3026-UB module series is a family of stand-alone GPS receivers feat uring the high performance u-blox 6 positi oning engine. These flexible and cost effe ctive receivers offer numerous connectivity options in a miniature 30x26x8.0mm pac kage. Their compact architecture and pow er and memory options make GAM-3026-UB modules ideal for battery operated mo bile devices with very strict cost and spac e constraints.

The 50-channel u-blox 6 positioning en gine boasts a Time-To-First-Fix (TTFF) of under 1 second. The dedicated acquisition engine, with over 1 million correlators, is capable of massive parallel time/frequency space searches, enabling it to find sat ellites instantly. Innovative design and technology suppresses jamming sources and mitigates multipath effects, giving GAM-3026-UB GPS receivers excellent navigation performance even in the most challenging environments.

GAM-3026-UB modules are not design ed for life saving or supporting devices or for aviation and should not be used in p roducts that could in any way negatively i mpact the security or health of the user or third parties or that could cause dama ge to goods.

Figure 1:GAM-3026-UB TopView

Applications

- LBS (Location Based Service)
- PND (Portable Navigation Device)
- Vehicle navigation system
- Mobile phone

Features

- Build on high performance, low-power UBLOX chipset
- Ultra high sensitivity: -160dBm
- Extremely fast TTFFat low signal level
- Built in high gain LNA
- Low power consumption: Max 45mA@ 5.0V
- NMEA-0183 compliant protocol or cust om protocol
- Operating voltage: 3.3V--5.0V
- Operating temperature range:-40to85°C
- Patch Antenna Size:25(w)mmX25(d)m mX4(h)mm
- Small form factor: 30x26x8.0mm
- RoHS compliant (Lead-free)

Performance Specification

Parameter	Specification		
Receiver Type	L1 frequency band, C/A c SBAS: WAAS, EGNOS, N		
Sensitivity	Tracking Acquisition	-160dBm -160dBm	
Accuracy	Position Velocity Timing (PPS)	5m CEP without SA 0.1m/s without SA 60ns RMS	
Acquisition Time	Cold Start Warm Start Hot Start Re-Acquisition	38s 35s 1s <1s	
Power Consumption	Tracking Acquisition Sleep/Standby	40mA @5.0V Vcc 45mA TBD	
NavigationDataUpdate Rate	1Hz		
Operational Limits	Altitude Velocity Acceleration	Max 18,000m Max 515m/s Less than 4g	

Interfaces Configuration

Power Supply: Regulated power for the GAM-3026-UB is required. The input voltage Vcc should be 3.3V ±10%, maximum, current is no less than 45mA. Suitable decoupling must be provided by external decoupling circuitry.

UART Ports: The module supports two full duplex serial channels UART. All serial connections are at 3V CMOS logic levels, if need different voltage levels, use appropriate level shifters. The baud rate of both serial ports are fully programmable, the data format is however fixed: X, N, 8, 1, i.e. X baud rate, no parity, eight data bits and one stop bit, no other data formats are supported, LSB is sent first. The modules default baud rate is set up 9600bps, however, the user can change the default baud rate to any value from 4800 bps to 115kbps.

UARTis used e.g. for booting and NMEA interface.

Backup Battery Power: In case of a power failure on pin Vcc, real-time clock and backup RAM are supplied through pin V_BAT. This enables the GAM-3026-UBGPS Receiver to recover from power failure with either a hot start or a warm start (depending on the duration of Vcc outage). If no Backup Battery is connected, the receiver performs a cold start upon powered up.

Pin Description

Pin No.	Pin name	I/O	Description	Remark
Black	GND	G	Ground	
Red	Vcc	ı	Module Power Supply	
Yellow	V_BAT	ı	RTC Battery Input	Leave Open in not used
White	RXD	ı	UART Serial Data Input 0	Pull up if not used
Blue	TXD	0	UART Serial Data output 0	Leave Open in not used

Absolute Maximum Rating

Parameter	Symbol	Min	Max	Units
Power Supply				
Power Supply Volt.	Vcc	3.0	5.0	V
Input Pins				
Input Pin Voltage I/O	RXD/TXD	-0.3	3.6	V
Backup Battery	V_BAT	2.0	3.6	V
Environment				
Storage Temperature	Tstg	-40	125	°C

PeakReflow Soldering Temperature	Tpeak	260	°C
Humidity		95	%

Note: Absolute maximum ratings are stress ratings only, and functional operation at the maxims is not guaranteed. Stress beyond the limits specified in this table may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the operating conditions tables as follow.

Operating Conditions

Parameter	Symbol	Condition	Min	Тур	Max	Units
Power supply voltage	Vcc		3.0	3.3	5.0	V
Powersupplyvoltageripple	Vcc_PP	Vcc=3.3V			20	mV
Consumption current	Icc	Vcc=3.3V		45	45	mA
Input high voltage	V _{IH}		0.7xVcc		Vcc+1.0	V
Input low voltage	V _{IL}		-0.3		0.3xVcc	V
Output high voltage	V _{OH}		0.8xVcc		Vcc	V
Output low voltage	V _{OL}		0		0.2xVcc	V
Operating temperature	Topr		-40		85	°C

NMEA 0183 Protocol

The NMEA protocol is an ASCII-based protocol, Records start with a \$ and with carriage return/line feed. GPS specific messages all start with \$GPxxx where xxx is a three-letter identifier of the message data that follows. NMEA messages have a checksum, which allows detection of corrupted data transfers.

The Label Jet GAM-3026-UBsupports the following NMEA-0183 messages: GGA, GSA, GSV,GLL,VTGand RMC.

Table 1: NMEA-0183 Output Messages

NMEA Record	DESCRIPTION			
GGA	Global positioning system fixed data			
GLL	Geographic position—latitude/longitude			
GSA	GNSS DOP and active satellites			
GSV	GNSS satellites in view			
RMC	Recommended minimum specific GNSS data			
VTG	Course over ground and ground speed			

GGA-Global Positioning System Fixed Data

Table 2 contains the values of the following example:

\$GPGGA, 161229.487,3723.24755,N, 12158.34165,W, 1,07,1.0,9.0,M.0000*18

Table 2: GGA Data Format

Name	Example	Units	Description
Message ID	\$GPGGA		GGA protocol header
UTC Position	161229.487		hhmmss.sss
Latitude	3723.24575		ddmm.mmmm
N/S indicator	N		N=north or S=south
Longitude	12158.34165		dddmm.mmmm
E/W Indicator	W		E=east or W=west
Position Fix Indicator	1		See Table 2-1
Satellites Used	07		Range 0 to 12
HDOP	1.0		Horizontal Dilution of Precision
MSL Altitude	9.0	meters	

Units	M	meters	
Geoids Separation		meters	
Units	M	meters	
Age of Diff.Corr.		second	Null fields when DGPS is not Used
Diff.Ref.Station ID	0000		
Checksum	*18		
<cr> <lf></lf></cr>			End of message termination

Table 2-1: Position Fix Indicators

Value	Description
0	Fix not available or invalid
1	GPS SPS Mode, fix valid
2	Differential GPS, SPS Mode, fix valid
3	GPS PPS Mode, fix valid

GLL-Geographic Position – Latitude/Longitude

Table 3 contains the values of the following example:

\$GPGLL, 3723.24755, N,12158.34165, W,161229.487, A*2C.

Table 3: GLL Data Format

Name	Example	Units	Description
Message ID	\$GPGLL		GLL protocol header
Latitude	3723.24755		ddmm.mmmm
N/S Indicator	N		N=north or S=south
Longitude	12158.34165		dddmm.mmmm
E/W Indicator	W		E=east or W=west

UTC Position	161229.487	hhmmss.sss
Status	А	A=data valid or V=data not valid
Checksum	*2C	
<cr> <lf></lf></cr>		End of message temination

GSA-GNSS DOP and Active Satellites

Table 4 contains the values of the following example:

\$GPGSA, A, 3, 07, 02, 26,27, 09, 04,15, , , , , 1.8,1.0,1.5*33.

Table 4: GSA Data Format

Name	Example	Units	Description
Message	\$GPGSA		GSA protocol header
Mode 1	А		See Table 4-2
Mode 2	3		See Table 4-1
Satellite Used	07		Sv on Channel 1
Satellite Used	02		Sv on Channel 2
Satellite Used			Sv on Channel 12
PDOP	1.8		Position Dilution of Precision
HDOP	1.0		Horizontal Dilution of Precision
VDOP	1.5		Vertical Dilution of Precision
Checksum	*33		
<cr> <lf></lf></cr>			End of message termination

Table 4-1: Mode 1

Value	Description		
1	Fix not available		
2	2D		
3	3D		

Table 4-2: Mode 2

Value	Description		
M	Manual-forced to operate in 2D or 3D mode		
Α	Automatic-allowed to automatically switch 2D/3D		

GSV-GNSS Satellites in View

Table 5 contains the values of the following example:

\$GPGSV, 2, 1, 07, 07, 79,048, 42, 02, 51,062, 43, 26, 36,256, 42, 27, 27, 138,42*71 \$GPGSV, 2, 2, 07, 09, 23,313, 42, 04, 19, 159, 41, 15,12,041, 42*41.

Table 5: GGA Data Format

Name	Example	Units	Description
Message ID	\$GPGSV		GSV protocol header
Number of Message	2		Range 1 to 3
Message Number	1		Range 1 to 3
Satellites in View	07		
Satellite ID	07		Channel 1(Range 1 to 32)
Elevation	79	degrees	Channel 1(Maximum 90)
Azinmuth	048	degrees	Channel 1(True, Range 0 to 359)
SNR(C/NO)	42	dBHz	Range 0 to 99,null when not tracking
Satellite ID	27		Channel 4(Range 1 to 32)

Elevation	27	degrees	Channel 4(Maximum 90)
Azimuth	138	degrees	Channel 4(True, Range 0 to 359)
SNR(C/NO)	42	dBHz	Range 0 to 99, null when not tracking
Checksum	*71		
<cr> <lf></lf></cr>			End of message termination

Depending on the number of satellites tracked multiple messages of GSV data may be required.

RMC-Recommended Minimum Specific GNSS Data

Table 6 contains the values of the following example:

\$GPRMC, 161229.487, A, 3723.24755, N, 12158.34165, W, 0.13,309.62, 120598,, *10

Table 6: RMC Data Format

Name	Example	Units	Description
Message ID	\$GPRMC		RMC protocol header
UTS Position	161229.487		hhmmss.sss
Status	А		A=data valid or V=data not valid
Latitude	3723.24755		ddmm.mmmm
N/S Indicator	N		N=north or S=south
Longitude	12158.34165		dddmm.mmmm
E/W Indicator	W		E=east or W=west
Speed Over Ground	0.13	Knots	
Course Over	309.62	Degrees	True
Ground			

Date	120598		Dummy
Magnetic variation		Degrees	E=east or W=west
Checksum	*10		
<cr> <lf></lf></cr>			End of message termination

VTG-Course Over Ground and Ground Speed

Table 7 contains the values of the following example:

\$GPVTG, 309.62, T, M, 0.13, N, 0.2, K*6E

Table 7: VTG Data Format

Name	Example	Units	Description
Message ID	\$GPVTG		VTG protocol header
Course	309.62	Degrees	Measured heading
Reference	Т		True
Course		Degrees	Measured heading
Reference	М		Magnetic
Speed	0.13	Knots	Measured horizontal speed
Units	N		Knots
Speed	0.2	Km/hr	Measured horizontal speed
Units	К		Kilometer per hour
Checksum	*6E		
<cr> <lf></lf></cr>			End of message termination

©Copyright 2013 Gotop Technology Co., Ltd. All Right Reserved The information contained herein is subject to change without notice. Gotop Technology Co., LTD

Add:Room 603 Zhantao Technology Building,Minzhi Road,Xinniu Communnity,Minzhi Street,Baoan District,ShenZhen City China.

Not to be reproduced in whole or part for any purpose without written permission of Gotop Technology Inc ('Gotop'). Information provided by Gotop is believed to be accurate and reliable. These materials are provided by Gotop as a service to its customers and may be used for informational purposes only. Gotop assumes no responsibility for errors or omissions in these materials, nor for its use. Gotop reserves the right to change specification at any time without notice.

These materials are provides 'as is' without warranty of any kind, either expressed or implied, relating to sale and/or use of Gotop products including liability or warranties relating to fitness for a particular purpose, consequential or incidental damages, merchantability, or infringement of any patent, copyright or other intellectual property right. Gotop further does not warrant the accuracy or completeness of the information, text, graphics or other items contained within these materials. Gotop shall not be liable for any special, indirect, incidental, or consequential damages, including without limitation, lost revenues or lost profits, which may result from the use of these materials.

Gotop products are not intended for use in medical, life-support devices, or applications involving potential risk of death, personal injury, or severe property damage in case of failure of the product.