

General Description

The Gotop GT-1612-MTGN is a complete GPS/GNSS engine module that features super sensitivity, ultra low power and small form factor. The GPS/GNSS signal is applied to the antenna input of module, and a complete serial data message with position, velocity and time information is presented at the serial interface with NM EA protocol or custom protocol.

Its -165dBm tracking sensitivity exten ds positioning coverage into place like ur ban canyons and dense foliage environm ent where the GPS/GNSS was not possib le before. The small form factor and low power consumption make the module eas y to integrate into portable device like PN Ds, mobile phones, cameras and vehicle navigation systems.

Applications

- LBS (Location Based Service)
- PND (Portable Navigation Device)
- Vehicle navigation system
- Mobile phone

Figure 1: GT-1612-MTGN Top View

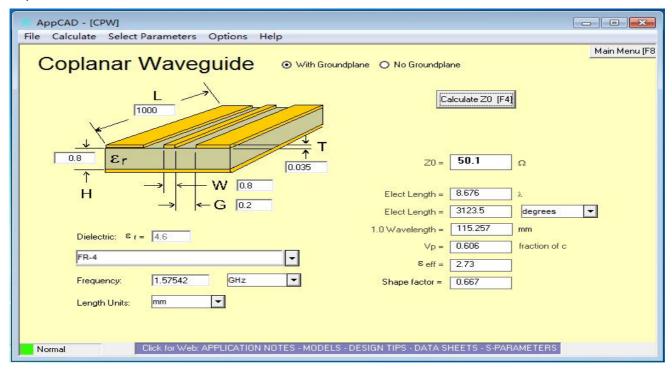
Features

- Build on high performance, low-powerMT3333chipset
- Ultra high sensitivity: -165dBm
- Extremely fast TTFFat low signal level
- Built in high gain LNA
- Low power consumption:Max 20mA@3. 3V
- NMEA-0183 compliant protocol or cust om protocol
- Operating voltage:2.8Vto4.3V
- Operating temperaturerange: -40to85°C
- SMD type with stamp holes
- Small form factor: 16x12x2.6mm
- RoHS compliant (Lead-free)

Performance Specification

Parameter	Specification		
Receiver Type	Gps/Glonass/Galileo/Beidou(afterICDreleased)receiver Supports multi-GNSS incl.QZSS,SBAS ranging Supports:WAAS/EGNOS/MSAS/GAGAN		
Sensitivity	Tracking Acquisition	-165dBm -163dBm(hot) -148dBm(cold)	
Accuracy	Position Velocity Timing (PPS)	5m CEP without SA 0.1m/s without SA 10ns RMS	
Acquisition Time	Cold Start Warm Start Hot Start Re-Acquisition	38s 35s 1s <1s	
Power Consumption	Tracking Acquisition Sleep/Standby	20mA @3.3V Vcc 18mA TBD	
NavigationDataUpdate Rate	1Hz		
Operational Limits	Altitude Velocity Acceleration	Max 18,000m Max 515m/s Less than 4g	

Interfaces Configuration


Power Supply: Regulated power for the GT-1612-MTGN is required. The input voltage Vcc should be 3.3V ±10%, maximum, current is no less than 20mA. Suitable decoupling must be provided by external decoupling circuitry.

UART Ports: The module supports two full duplex serial channels UART.All serial connections are at 3V CMOS logic levels, if need different voltage levels, use appropriate level shifters. The baud rate of both serial ports are fully programmable, the data format is however fixed: X, N, 8, 1, i.e. X baud rate, no parity, eight data bits and one stop bit, no other data

formats are supported, LSB is sent first. The modules default baud rate is set up 9600bps, however, the user can change the default baud rate to any value from 4800 bps to 115kbps. UART is used e.g. for booting and NMEA interface.

Antenna: The GT-1612-MTGN GPS/GNSS receiver is designed for supporting the active antenna or passive antenna connected with pin RF_IN. The gain of active antenna should be no less than 15dB. The maximum noise figure should be no more than 2.5dB and output impedance is at 50 Ohm.

Backup Battery Power: In case of a power failure on pin Vcc, real-time clock and backup RAM are supplied through pin VBAT. This enables the GT-1612-MTGN GPS /GNSS Receiver to recover from power failure with either a hot start or a warm start (depending on the duration of Vcc outage). If no Backup Battery is connected, the receiver performs a cold start upon powered up.

Pin Description

Pin No.	Pin name	I/O	Description Remark		
1	NC		No connection		
2	NC		No connection		
3	PPS	0	Time Pulse(1PPS)	Leave Open in not used	
4	NC		No connection		
5	NC		No connection		
6	NC		No connection		
7	NC		No connection		
8	NC		No connection		
9	VCC_RF	Р	Linear regulator power output power source of backup batte	ut, 3.3V (Do not use this as ry)	
10	GND	G	Ground		
11	RF_IN	I	GPS/GNSS Signal Input		
12	GND	G	Ground		
13	GND	G	Ground		
14	GPIO1	I/O	General purpose I/O		
15	GPIO2	I/O	General purpose I/O		
16	NC		No connection		
17	NC		No connection		
18	NC		No connection		
19	NC		No connection		
20	TXD	0	UART Serial Data Output	Pull up (75KΩ) if not used	
21	RXD	I	UART Serial Data Input Pull up (75KΩ) if not used		
22	VBAT	Р	Backup battery supply voltage		
23	VCC	Р	DC suppiy voltage		
24	GND	G	Ground		

Pin Assignment

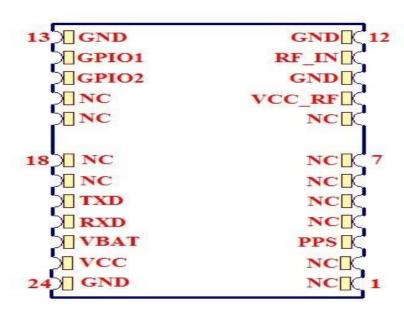


Figure 2: GT-1612-MTGN Pin Package

Mechanical Specification

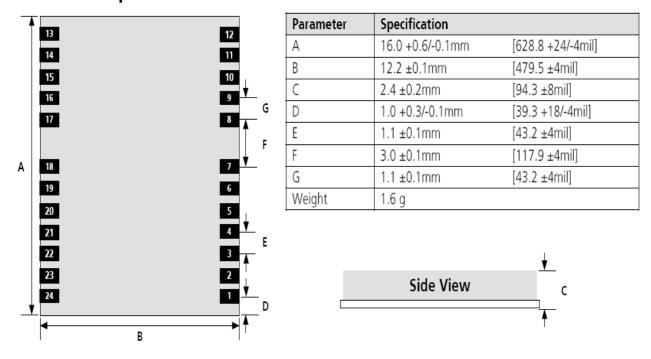


Figure 3: GT-1612-MTGN Dimensions

Absolute Maximum Rating

Parameter	Symbol	Min	Max	Units
Power Supply				
Power Supply Volt.	Vcc	2.8	4.3	V
Input Pins				
Input Pin Voltage I/O	RXD/TXD	-0.3	3.6	V
Backup Battery	VBAT	2.0	3.6	V
Environment				
Storage Temperature	Tstg	-40	125	°C
PeakReflow Soldering Temperature	Tpeak		260	°C
Humidity			95	%

Note: Absolute maximum ratings are stress ratings only, and functional operation at the maxims is not guaranteed. Stress beyond the limits specified in this table may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the operating conditions tables as follow.

Operating Conditions

Parameter	Symbol	Condition	Min	Тур	Max	Units
Power supply voltage	Vcc		2.8	3.3	4.3	V
Powersupplyvoltageripple	Vcc_PP	Vcc=3.0V			30	mV
Consumption current	Icc	Vcc=3.0V		20	18	mA
Input high voltage	V _{IH}		0.7xVcc		Vcc+1.0	V
Input low voltage	V _{IL}		-0.3		0.3xVcc	V
Output high voltage	V _{OH}		0.8xVcc		Vcc	V
Output low voltage	V _{OL}		0		0.2xVcc	V

Operating temperature	Topr		-40		85	°C
-----------------------	------	--	-----	--	----	----

Software Protocol

NMEA 0183 Protocol

The NMEA protocol is an ASCII-based protocol, Records start with a \$ and with carriage return/line feed. GPS specific messages all start with \$GPxxx/GNxxxwhere xxx is a three-letter identifier of the message data that follows. NMEA messages have a checksum, which allows detection of corrupted data transfers.

The Gotop GT-1612-MTGN supports the following NMEA-0183 messages: GPGSA. GPRMC.GNGSA.GNRMC.GLGSV

Table 1: NMEA-0183 Output Messages

NMEA Record	DESCRIPTION		
GPGSA	GPS DOP and active satellites		
GPRMC	Recommended minimum specific GPS data		
GNGSA	GNSS DOP and active satellites		
GNRMC	Recommended minimum specific GNSS data		
GLGSV	GPS/GNSS satellites in view		

GPGSA-GPS DOP and Active Satellites

Table 4 contains the values of the following example:

\$GPGSA, A, 3, 07, 02, 26,27, 09, 04,15, , , , , 1.8,1.0,1.5*33.

Table 4: GSA Data Format

Name	Example	Units	Description
Message	\$GPGSA		GSA protocol header
Mode 1	Α		See Table 4-2
Mode 2	3		See Table 4-1
Satellite Used	07		Sv on Channel 1

Satellite Used	02	Sv on Channel 2
Satellite Used		Sv on Channel 12
PDOP	1.8	Position Dilution of Precision
HDOP	1.0	Horizontal Dilution of Precision
VDOP	1.5	Vertical Dilution of Precision
Checksum	*33	
<cr> <lf></lf></cr>		End of message termination

Table 4-1: Mode 1

Value	Description
1	Fix not available
2	2D
3	3D

Table 4-2: Mode 2

Value	Description		
M	Manual-forced to operate in 2D or 3D mode		
Α	Automatic-allowed to automatically switch 2D/3D		

GPRMC-Recommended Minimum Specific GPS Data

Table 6 contains the values of the following example:

\$GPRMC, 161229.487, A, 3723.2475, N, 12158.3416, W, 0.13,309.62, 120598,, *10

Table 6: RMC Data Format

Name	Example	Units	Description
Message ID	\$GPRMC		RMC protocol header
UTS Position	161229.487		hhmmss.sss
Status	Α		A=data valid or V=data not valid

Latitude	3723.2475		ddmm.mmmm
N/S Indicator	N		N=north or S=south
Longitude	12158.3416		dddmm.mmmm
E/W Indicator	W		E=east or W=west
Speed Over Ground	0.13	Knots	
Course Over	309.62	Degrees	True
Ground			
Date	120598		Dummy
Magnetic variation		Degrees	E=east or W=west
Checksum	*10		
<cr> <lf></lf></cr>			End of message termination

GNGSA-GNSS DOP and Active Satellites

Table 4 contains the values of the following example:

\$GNGSA, A, 3, 07, 02, 26,27, 09, 04,15, , , , , 1.8,1.0,1.5*33.

Table 4: GSA Data Format

Name	Example	Units	Description
Message	\$GNGSA		GSA protocol header
Mode 1	А		See Table 4-2
Mode 2	3		See Table 4-1
Satellite Used	07		Sv on Channel 1
Satellite Used	02		Sv on Channel 2
	•••		
Satellite Used			Sv on Channel 12

PDOP	1.8	Position Dilution of Precision
HDOP	1.0	Horizontal Dilution of Precision
VDOP	1.5	Vertical Dilution of Precision
Checksum	*33	
<cr> <lf></lf></cr>		End of message termination

Table 4-1: Mode 1

Value	Description
1	Fix not available
2	2D
3	3D

Table 4-2: Mode 2

Value	Description		
M	Manual-forced to operate in 2D or 3D mode		
Α	Automatic-allowed to automatically switch 2D/3D		

GNRMC-Recommended Minimum Specific GNSS Data

Table 6 contains the values of the following example:

\$GNRMC, 161229.487, A, 3723.2475, N, 12158.3416, W, 0.13,309.62, 120598,, *10

Table 6: RMC Data Format

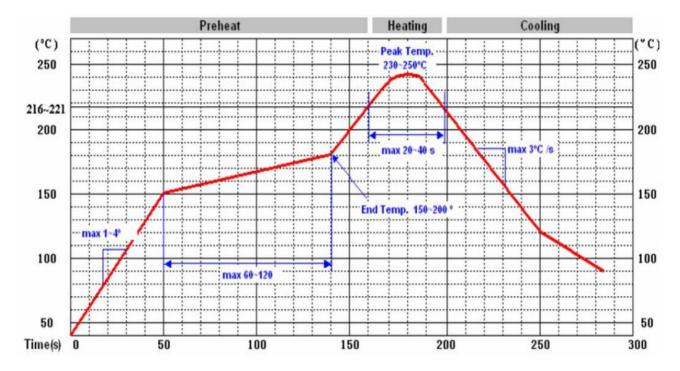
Name	Example	Units	Description
Message ID	\$GNRMC		RMC protocol header
UTS Position	161229.487		hhmmss.sss
Status	Α		A=data valid or V=data not valid
Latitude	3723.2475		ddmm.mmmm
N/S Indicator	N		N=north or S=south
Longitude	12158.3416		dddmm.mmmm

E/W Indicator	W		E=east or W=west
Speed Over Ground	0.13	Knots	
Course Over	309.62	Degrees	True
Ground			
Date	120598		Dummy
Magnetic variation		Degrees	E=east or W=west
Checksum	*10		
<cr> <lf></lf></cr>			End of message termination

GLGSV-GPS/GNSS Satellites in View

Table 5 contains the values of the following example:

\$GLGSV, 2, 1, 07, 07, 79,048, 42, 02, 51,062, 43, 26, 36,256, 42, 27, 27, 138,42*71 \$GLGSV, 2, 2, 07, 09, 23,313, 42, 04, 19, 159, 41, 15,12,041, 42*41.


Table 5: GLGGA Data Format

Name	Example	Units	Description
Message ID	\$GLGSV		GSV protocol header
Number ofMessage	2		Range 1 to 3
Message Number	1		Range 1 to 3
Satellites in View	07		
Satellite ID	07		Channel 1(Range 1 to 96)
Elevation	79	degrees	Channel 1(Maximum 90)
Azinmuth	048	degrees	Channel 1(True, Range 0 to 359)
SNR(C/NO)	42	dBHz	Range 0 to 99,null when not tracking
Satellite ID	27		Channel 4(Range 1 to 96)

Elevation	27	degrees	Channel 4(Maximum 90)
Azimuth	138	degrees	Channel 4(True, Range 0 to 359)
SNR(C/NO)	42	dBHz	Range 0 to 99, null when not tracking
Checksum	*71		
<cr> <lf></lf></cr>			End of message termination

Depending on the number of satellites tracked multiple messages of GLGSV data may be required. The range oF GPS SVID is 1~32, GNSS SVID is 65~96.

Manufacturing Process Recommendations

Note: The final soldering temperature chosen at the factory depends on additional external factors like choice of soldering paste, size, thickness and properties of the baseboard, etc. Exceeding the maximum soldering temperature in the recommended soldering profile may permanently damage the module.

©Copyright 2013 Gotop Technology Co., Ltd. All Right Reserved

The information contained herein is subject to change without notice.

Gotop Technology Co., LTD

Add:Room 603 Zhantao Technology Building,Minzhi Road,Xinniu Communnity,Minzhi Street,Baoan District,ShenZhen City China.

Not to be reproduced in whole or part for any purpose without written permission of Gotop Technology Inc ('Gotop'). Information provided by Gotop is believed to be accurate and reliable. These materials are provided by Gotop as a service to its customers and may be used for informational purposes only. Gotop assumes no responsibility for errors or omissions in these materials, nor for its use. Gotop reserves the right to change specification at any time without notice.

These materials are provides 'as is' without warranty of any kind, either expressed or implied, relating to sale and/or use of Gotop products including liability or warranties relating to fitness for a particular purpose, consequential or incidental damages, merchantability, or infringement of any patent, copyright or other intellectual property right. Gotop further does not warrant the accuracy or completeness of the information, text, graphics or other items contained within these materials. Gotop shall not be liable for any special, indirect, incidental, or consequential damages, including without limitation, lost revenues or lost profits, which may result from the use of these materials.

Gotop products are not intended for use in medical, life-support devices, or applications involving potential risk of death, personal injury, or severe property damage in case of failure of the product.